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Objectives

Intermediate term

Mechanisms of early-stage homogeneous coking
and methods to suppress PAH coalescence/
reaction.

Long term

Enable new approaches to kinetic modeling.



The Problem

JP7

Endothermic cooling system
* Fuel pyrolysis to remove heat

* Cracked products give better
combustion performance

* Coke formation is a problem
* May use catalysts

Combustor

e Burns cracked fuel —
composition coupled to cooling
system operation and design

* Shocks and wide range of ¢.

* Flame processes may be
facilitated by the use of catalysts

Fuel cracking in the cooling system gives heat sinking capability, but also
promote coke formation.

— Fuel cracking and coke formation driven by the same force — entropy!




Thermodynamic Driving Forces
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The Problem
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Endothermic cooling system
* Fuel pyrolysis to remove heat

* Cracked products give better
combustion performance

* Coke formation is a problem

* May use catalysts

Combustor

e Burns cracked fuel —
composition coupled to cooling
system operation and design

* Shocks and wide range of ¢.

* Flame processes may be
facilitated by the use of catalysts

* Fuel cracking in cooling system gives heat sinking capability, but also promote
coke formation.

materials engineering).

— Fuel cracking and coke formation driven by the same force — entropy!
— The processes are kinetically controlled (and supercritical).

 Three types of coke deposits (Edwards 2003)
— Filamentous — fluid/surface interactions in origin and controllable by surface

— Amorphous and graphitic — PAHs formed in the fluid phase “coalesce” into

particulates which deposit on walls — a key problem to be addressed.



PAHSs as Intermediates to Coke

Bl e o

17 Cy Hy isomers: - 2D O
& 23

()
L &

Average UV Absorbance (190-520 nm)
oo
QGO -

el
o0

Wornat (2007)

(&)
—
(&)]

25 35 45 55 65 75

HPLC Retention time [min]

Amorphous and graphitic wall deposits are presumably from particulate
matters due to PAH-PAH coalescence/reaction.

PAH binding mechanisms not well established: dispersion/electrostatic
interactions, excited states, dynamic bonding etc.



The Problem

JP7

Endothermic cooling system
* Fuel pyrolysis to remove heat

* Cracked products give better
combustion performance

* Coke formation is a problem
* May use catalysts

Combustor

e Burns cracked fuel —
composition coupled to cooling
system operation and design

* Shocks and wide range of ¢.

* Flame processes may be
facilitated by the use of catalysts

Fuel cracking in the endothermic cooling system gives better heat sinking

capability, but also promote coke formation.
— Fuel cracking and coke formation driven by the same force — entropy!

— The processes are kinetically controlled.

Three types of coke deposits

— Filamentous — fluid/surface interactions in origin and controllable by surface
materials engineering).

— Amorphous and graphitic — PAHs formed in the fluid phase “coalesce” into
particulates which deposit on walls — a key problem to be addressed.

A highly coupled kinetic problem — how do we generate chemical reaction
models directly from results of ab initio theory?




Working Hypotheses/Questions(1)

The Coking Problem

1. Fuel pyrolysis and PAH/coke formation share the same
thermodynamic driving force. It is impossible to maximize fuel
pyrolysis while suppress PAH formation at the same time.

2. Suppressing PAH-PAH coalescence/reaction is feasible, because
such processes do not yield large Gibbs free energy drop.

— Fundamental binding interactions among PAHs (purely dispersion/
electrostatic forces or also involves other unknown interactions —
electronically excited states, w diradicals etc).

— Dynamic effects under supercritical condition.

— If these interactions/effects can be understood, is there an additive that
can trick PAHs into disliking each other.



Working Hypotheses/Questions(2)

The Long-Term Combustion Chemistry Problem

1. Looking for an approach more robust and more “ab initio” than
the current chemistry modeling approach.

— Designs of endothermic cooling system and combustors are evolving;
— New catalysts are being developed
— Long lead-time to develop any predictive, coupled kinetic models

— High pressure/supercritical kinetics — rate theory (and its application) falls
apart.

2. We have been using the approach of detailed kinetic modeling
for more than 50 years.

— Is this the only “fundamental” approach we can take?

— Do we need to write out thousands of reactions before we can make a
prediction about the kinetic and heat release rates?



Potential Energy Landscape and Associated Approaches

e A concept widely used in protein folding kinetics (Joseph
Bryngelson)
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e and in materials/fuel cell research.



Potential Energy Landscape and Associated Approaches

e Accuracy of kinetic prediction may be improved, as needed, by
adapting the resolution of potential energy.
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RCCE and Potential Energy Landscaping (RCCE-PEL)
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e No reaction steps = Infinite rate kinetics
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e Slow(er) reaction steps added — equivalent to
adding details (barriers and local minima) into
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e Finite rate kinetics with accuracy improved by
an adaptive approach to adding PES details

—— ® Converging chemical time scale €<= physical
time scale (flow, turbulence, transport)
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PEL-RCCE in turbulent reacting flow modeling

Experimental method developments
T(t), H(t), S(t), G(¢t)

Chemical dynamics
aromatic interactions and binding
post-transition state dynamics

Automated PES search methods

PEL-RCCE theory and application

PAH-PAH binding interactions/coalescence
suppression

Nanocatalysts



Rate-Controlled Constrained-Equilibrium (RCCE)

Keck & Gillespie (1971); Keck (1990); Beretta et al. (2012)

The method of Lagrange Multipliers as applied to chemical equilibrium
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Rate-Controlled Constrained-Equilibrium (RCCE)

Keck & Gillespie (1971); Keck (1990); Beretta et al. (2012)

For non-equilibrium problems, additional constraints are added as
needed, preferably starting from rate limiting steps:
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e Yields the exact solution when the number of constraining equations R = number
of reactions / (Keck 1990).

e Good quality, converging solution achieved usually with R « I.

e A mechanism reduction method — allowing for separation of time scales — still
require a (detailed) reaction mechanism to be made available.



Principle Questions Yet to be Addressed

e Can a potential energy landscape (PEL) approach be developed
from ab initio methods?

e Can the rate limiting steps on the PEL be identified in a robust
manner?

e Can new experimental approaches be developed to interrogate
parts of a PEL?

e What are the role of the better known H,/C;-C, chemistry in the
RCCE-PEL approach?

e Can the RCCE-PEL approach be implemented in turbulent flame
simulations?



Current Approach

e Methodology based on Dixon-Lewis’ s work in the 1960s’ .
e Write down every reaction step and find its rate coefficient.
e H,, H,/CO etc with ~ 2 dozen reactions.
e Can have a closure because of a limited number of rate parameters.
e Allowed us to understand the detailed laminar flame structure.

e Later work by many focused on combustion chemistry of small
hydrocarbons — O(100) reactions — many of which have been
probed directly by experiments and rate theory calculations.

e Recent effort for large hydrocarbons largely based on empirical

knowledge
e group additivity
e analogous reactions — reaction class
* guesses



Current Approach

* The number of species/reactions increases exponentially as the
fuel size increases.
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Current Approach

* The number of species/reactions increases exponentially as the
fuel size increases.
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¢ A milky-way galaxy model
built on the position and

| ] velocity of each plant and star
e A solar system model built on the is probably a terrible model.
position and velocity of each and

every planet is a triumph of science.




Combustion Reaction Mechanism Development

e Methods of mechanism reduction becomes mature.
e Still require detailed reaction models to be made available
e The number of scalars remain large, perhaps too large to
incorporate in CFD codes (high-speed combustion) for years to
come

e Rethink our strategy for treating chemistry.
e Adaptive resolution/accuracy
e Key property to follow: time evolution of energy and entropy

e Throw away the concept of reaction mechanism for the
moment
e Focus on the potential energy surface
some initial thoughts in the context of Keck’ s RCCE



